Teorema fundamental de la semejanza de triángulos.     Todas las paralelas a un lado de un triángulo que no pase por el vértice opuesto, determina con las rectas a las que pertenecen los otros dos lados, un triángulo semejante al dado.    Hipótesis:   Dado  {\displaystyle ABC}  y  {\displaystyle r\|AC} {\displaystyle r}  corta  {\displaystyle AB}  o a su prolongación en  {\displaystyle L} {\displaystyle r}  corta  {\displaystyle BC}  o a su prolongación en  {\displaystyle M}    Teorema:   {\displaystyle (BLM\sim BAC)}      
 
Comentarios
Publicar un comentario